
www.manaraa.com

1110 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 6, NOVEMBER 2006

Supporting Software Development With Roles
Haibin Zhu, Senior Member, IEEE, MengChu Zhou, Fellow, IEEE, and Pierre Seguin

Abstract—Software development tools are very important in
software engineering. Although roles have been acknowledged
and applied for many years in several areas related to software
engineering, there is a lack of research on software development
tools based on roles. Most significantly, there is no complete and
consistent consideration of roles in all the phases of software
development. Considering the increasing importance and appli-
cations of roles in software development, this paper intends to
discuss the importance of roles in software engineering and that
of role-based software development; review the literature relevant
to role mechanisms in software engineering; propose and describe
a role-based software process; and implement a prototype tool
for developing complex software systems with the help of role
mechanisms.

Index Terms—Role, role concept, role mechanism, software
engineering.

I. INTRODUCTION

ROLES are important in our social lives. More than 2000
years ago, Confucius stated: “If names are not rectified,

then language will not be in accord with truth. If language is not
in accord with truth, then things cannot be accomplished” [Lun
Yu: Zi Lu No. 13, Section 3]. In this saying, he emphasizes the
importance of names, or implicit roles. He also said: “Let the
king be a king, the minister be a minister, the father be a father,
and the son be a son” [Lun Yu: Yan Hui No. 12, Section 11]. In
this saying, he emphasizes the importance of positions, or more
technically, roles. Shakespeare said: “All the world is a stage,
and all the men and women merely players; they all have their
exits and entrances; and one man in his time plays many parts.
(As You Like It, Act II, Scene 7).” These sayings all signify the
importance of roles in our social lives.

Role concepts have been applied widely in behavioral sci-
ence, management, sociology, and psychology for many years.
Roles are very useful in modeling the authority, responsibility,
functions, and interactions associated with managerial positions
within organizations. Early in 1982, Turoff and Hiltz [40]
introduced roles into electronic journal system design. In their
electric journal, they designed different role interfaces such
as author, editor, reviewer, and reader. The design of these

Manuscript received November 2, 2005; revised May 2, 2006 and July 20,
2006. This work was supported by the IBM Eclipse Innovation Grant Funding
and Natural Sciences and Engineering Research Council of Canada (NSERC)
Discovery Funding of Canada. This paper was recommended by Guest Editor
G. Cabri.

H. Zhu and P. Seguin is are with the Department of Computer Science and
Mathematics, Nipissing University, North Bay, ON P1B 8L7, Canada (e-mail:
haibinz@nipissingu.ca; seguin_pierre@yahoo.ca).

M. Zhou is with the Department of Electrical and Computer Engineer-
ing, New Jersey Institute of Technology, Newark, NJ 07102 USA (e-mail:
zhou@njit.edu).

Digital Object Identifier 10.1109/TSMCA.2006.883170

roles regulated the information and process flows among all the
users of the system. They also specify roles in their electronic
information exchange system (EIES) with subsets of primitive
privileges including append, link, assign, and use operations
[41]. Roles were taken as an important metaphor in the system.
In the EIES, users dealt with roles but not individual privileges.
With the primitive privileges, they composed roles such as
indexer, organizer, and contributor.

Recently, more and more papers that apply roles have been
published. Attention has been paid to roles in different areas
relevant to systems such as modeling, software engineering,
access control, system administration, agent systems, database
systems, and collaborative systems [44]–[46]. Roles can help
team members avoid being inundated by overwhelming infor-
mation. Individuals in a team should have clear positions, and
their roles should be related but not interfere with each other.

Although there is a common belief that roles are important
concepts, until now, no consensus has been reached as to how
roles should be represented and integrated as components into
information systems. Specific meanings are assigned to the
term “role” in different areas of research. The researchers then
take their special understanding to support the basic ideas of
their specific research topics or development projects. Many
different role concepts have been proposed and applied in
different areas, and discussed from different viewpoints. The
actual situation of role applications in information systems can
only be described as in chaos. There are no clear statements
of what roles are in too many papers to list in the references.
We encounter many difficulties in classifying the relationships
of role concepts and mechanisms in different areas of appli-
cation. There are few relations and inheritances among the
role mechanisms applied in different studies and applications.
Many early papers on roles from information systems referred
to no research on roles in behavioral science. Roles seem to be
phantoms. They are everywhere and every explanation seems
reasonable, but it is difficult to grasp, identify, and completely
specify them. Hence, there is still a need to clarify role concepts
in order to support the design of information systems. In
software engineering, roles are applied in different ways for
different purposes, such as, roles as modeling mechanisms,
interaction media, analysis and design tools, components for
process models, and human resource management tools.

Having studied the literature in behavioral science includ-
ing management, sociology and psychology, there would be
benefits for the information-systems field in applying the role
concept as developed in the behavioral sciences, because an
information system is a virtual community that should truly
simulate a real one.

Software development is a difficult and complex task. It is a
typical collaborative activity that involves group organization,

1083-4427/$20.00 © 2006 IEEE

www.manaraa.com

ZHU et al.: SUPPORTING SOFTWARE DEVELOPMENT WITH ROLES 1111

job dispatching and cooperation among group members. The
members should fulfill their obligations and respect the rights
of others in a software team.

In order for an information technology company to stay
competitive, it is essential for its software teams to rapidly
develop high-quality software, i.e., to deliver a software product
within budget and by the deadline. Software engineering has
been practiced and researched for 30 years to fulfill this goal;
however, failure of software is still widespread. Many com-
panies and enterprises experience the pain of software failure.
Many of the reasons of software failure listed by [10] are related
to people, task division, and project management. To manage
tasks, organize people, and facilitate their collaboration in a
software development team, we need to adopt the successful
methodologies from social sciences, psychology, behavioral
sciences, and organizational theories. Supporting cooperation
in software processes is a critical task that has many facets and
implications [3]. The concept of role is widely used in these
disciplines.

Another key point in software engineering is “to divide
and conquer.” “How to divide” has been a major problem for
software engineering for over 30 years. Different methodolo-
gies have been proposed such as component-based, object-
oriented, and service-oriented ones. From our experience, the
current situation is not satisfactory yet. We need to pursue new
methodologies to overcome the problem and promote software
development to a new stage. We believe role-based software
development (RBSD) is one such new method, because roles
can be applied in project management, system analysis, system
design, and system deployment. With roles, task management,
and distribution will be made easy.

This paper contributes in the following aspects.

1) Further establishes the importance of roles in all aspects
of software engineering.

2) Proposes a process of role-based software engineering.
3) Develops a prototype tool to dynamically add, specify,

and modify roles. Based on our research, we believe that
these tasks are evidently required in all the phases of
software development.

This paper is organized as follows. Section II reviews
roles applied in different aspects of software development.
Section III proposes a process of RBSD. Section IV describes
the design and implementation of a software development plat-
form prototype. Section V concludes this paper and indicates
the further research topics.

II. ROLES IN SOFTWARE DEVELOPMENT VERSUS

ROLE-BASED ACCESS CONTROL (RBAC)

When we discuss role-based approaches, many people men-
tion RBAC. RBAC was proposed early in the 1990s, and the
term “role-based” was used mostly in access control and system
management in the past 15 years. Because of the limitation of
the view of access control, the role concepts and mechanisms in
RBAC cannot transcend the requirement of access control, even
though many people have tried to give a more abstract role con-

cept and more generalized role model. The role characteristics
in RBAC are as follows [5], [11], [13]–[15], [20], [27], [35].

1) Least Privilege: It requires that users be given no more
privileges than necessary to perform their job function.

2) Separation of concerns: 1) A role can be associated with
an operation of a business function only if the role is
an authorized role for the subject and the role was not
assigned previously to all of the other operations. 2) A
user is authorized as a member of a role only if that
role is not mutually exclusive with any of the other
roles for which the user already possesses membership.
3) A subject can become active in a new role only if the
proposed role is not mutually exclusive with any of the
roles in which the subject is currently active.

3) Cardinality: The number of users taking a role cannot
exceed its cardinality, i.e., the maximum number of users
who can take this role.

4) Dependency constraints: There is a hierarchy or such re-
lationships among roles as contain, exclude, and transfer.

The role concept in RBAC actually comes from the idea used
in operating systems. A role is a tag that can be used by the sys-
tem to perform protection on resources. In the UNIX operating
system, every user is categorized as an owner, group member
or one of others. These are actually roles for a user to access a
file. The system grants users, based on their roles, access rights
to files in order to accomplish protection. The major problem
is that RBAC only considers the benefits obtained by assigning
access permissions to users. This is a common view of software
systems, i.e., a user is a client and the system is a server. RBAC
emphasizes roles with respect to rights only.

In fact, in a social environment, roles are taken as a tool to
specify human behavior. Their results are a good guide for our
software developers to organize, analyze, and design software
systems. In RBSD, roles are taken as interaction mechanisms to
facilitate the interaction among team members; roles are taken
as modeling mechanisms to create and design system frame-
works; and roles are taken as software construction mechanisms
to produce executable software code.

Collaborative activities in software development require
both aspects of roles: rights and responsibilities. Collaboration
among objects in a system also requires that an object know
both these aspects. Also, RBSD requires that a role be dynamic.
A user’s binding to a role may change from one application
to another and perhaps even during a single session within
one application. Clearly, this is not captured by the operating
system-level role concepts of RBAC. We will see many more
characteristics of roles to be detailed in Section III that are
not included in the roles of RBAC. Roles in RBAC only cover
access rights of system users to system objects. In RBSD, roles
are expected to cover rights, responsibilities, accessibilities, and
collaboration methods.

III. SOFTWARE DEVELOPMENT RESEARCH

RELATED TO ROLES

Software engineering involves many aspects or steps from
management, modeling, design, and coding. Therefore, roles
are introduced into software engineering in many different

www.manaraa.com

1112 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 6, NOVEMBER 2006

ways. From the waterfall model of software development, we
know that the software development life cycle (SDLC) starts
from project plan, to system requirement analysis, to system
design, to coding, and finally to maintenance [30]. Roles as
abstract concepts and as tools can be applied in almost every
aspect in the life cycle. We say “almost” because roles have
not been fully developed in all the SDLC yet. Roles have been
introduced into software engineering to mainly help analyze,
design, and manage software systems. The key is how to
support software development with roles.

In this section, we only summarize those publications rel-
evant to SDLC. In the past, roles were mainly concerned
with notation systems, object collaboration, reusable compo-
nent design, and project management. Roles have been applied
into different aspects of software engineering with different
emphasis, as reviewed next.

A. Roles Relevant to Management

To form a successful organization, we need to have the
members in the organization play different types of roles, such
as task-oriented, relation-oriented, and self-oriented ones [18].
Unclear role specification creates dysfunctional ambiguity and
conflict in an organization [7], and clear role definition and
specification can help a person collaborate in a group [2]. This
is also true in software development. There has been extensive
research on role dynamics. It is concluded that the stress of an
organization comes from the role conflicts and role ambiguity
[7]. According to [1] and [22], role conflicts mean a situation
in which an individual does not know how he or she should
behave because the expectations of two or more other people
differ. Role ambiguity means a situation in which an individual
does not know exactly how he or she is expected to behave
because the expectations are set forth vaguely and abstractly.
Dynamic role allocation requires a stable basis in order to
improve productivity and performance [1]. In the future, people
may be expected to dynamically change their roles according to
the needs of the group and the organization [6]. Therefore, there
is a strong requirement for clear role specification and dynamic
role allocation in collaboration.

The current workflow products for office automation declare
that in a system, every role has simple and effective tasks.
From the role definition, users can understand their duties and
improve their work efficiency. These products show us the
requirements of roles in normal office jobs that are a type of
collaboration.

In 1993, Cain and Coplien proposed a role-based empirical
process modeling environment [9]. They considered roles as
building blocks of organizational structures. In their process
model, roles are longstanding jobs within a process, usually
intuitively recognized by its culture, for which relatively stable
job descriptions may exist. They applied classes, responsi-
bilities, and collaborators (CRC) cards to describe roles and
distributed CRC cards to team members to play them. They
observed that the role-based processes were satisfactory to the
team members.

In 1996, in the SPADE-1 [3] environment, Bandinelli et al.
introduced static roles such as project manager, system admin-

istrator, designer, and programmer in their environment. Users
can perform operations on the global workspace according to
their roles. They used process modeling languages to offer ca-
pabilities to describe roles, manual and automated procedures,
interaction among users, process artifacts, and constraints.
Because their major task is to provide a collaborative environ-
ment for software engineering, they fail to develop roles deeply
enough. They just use a string such as “ProjManager” to express
the role of a project manager. In other words, their roles are used
to simply specify the tasks or operations of a user. There are no
discussions about how to add new or modify existing roles in
their SPADE-1 environment.

Sheard [37] described 12 roles involved in software en-
gineering in 1996: Requirements Owner, System Designer,
System Analyst, Validation/Verification Engineer, Logistics/
Operations Engineer, Glue among Subsystems, Customer Inter-
face, Technical Manager, Information Manager, Process Engi-
neer, Coordinator, and Classified Ads System Engineering. She
mainly described roles by illustrating relevant responsibilities
or jobs. She also pointed out and discussed the problems related
to roles in systems engineering such as role allocation, role
combination, and role interaction. In her paper, no solutions
have been proposed.

In 2004, Acuna and Juristo published their practice in apply-
ing role concepts intuitively in software project management
[1]. They concentrate on human resource management in soft-
ware development and believe that the theory of psychology
helps software project management. They define roles as sets
of responsibilities and capabilities required to carry out the
activities of each subprocess. A capability defines the skills
or attributes of a person. Their method is capability-oriented,
and roles are taken as the elements of a software process.
Their method supports only project management at the level of
concepts and methodology but they provide no tools to facilitate
such work.

In project management, roles are used to express different
behaviors. Roles are used to support cooperation among team
members by specifying tasks and operations [1], [9].

B. Roles Relevant to Design

Roles are a fundamental concept in modeling. Roles are
entities that temporarily confine the behavior of objects. A role
is considered as an abstraction and decomposition mechanism
related to objects. Objects may play roles. When an object plays
a role, it accepts messages and provides services (or fulfill
responsibilities) related to its role. A role constitutes a part
of an object’s behavior (or responsibility) that is obtained by
considering only the interactions of that role and hiding all other
interactions. Roles are defined as a concept that is founded but
not semantically rigid [17]. “Founded” means that a concept
can exist essentially independently. “Semantically rigid” means
that a concept contributes to the identity of its instance. This
definition can help determine if a concept is a role. Roles
allow not only for the representation of multiple views of the
same phenomenon, but also for the representation of changes
in time. Roles are also the bridge between different levels of
detail in an ontological structure and for networking ontology of

www.manaraa.com

ZHU et al.: SUPPORTING SOFTWARE DEVELOPMENT WITH ROLES 1113

different domains. The role analysis technique [12] is proposed
to analyze dynamic programs. Its role concept reflects the
important aspects of roles: the separation of concerns and role
transitions. The working behavior of an object represents the
specific context in which it is defined, together with other
objects. All the actions in its working behavior belong to one
or more of its roles.

In 1983, Holt pioneered research on role activity theory [19].
The theory was improved in 1995 by Ould who proposed role
activity diagrams (RADs) to describe software processes [29].
RAD is generally used to show the responsibilities, drivers, and
parallelism of the processes. A RAD comprises one or more
role symbols annotated with role names. In RAD, a process is
composed of roles. A role is composed of activities and taken
as a means of associating human and other resources with tasks
and processes.

In 2000, Murdoch and McDermid proposed a method to
model engineering design processes with RAD [26]. They
believe that various resources and events can be associated
with a role. In their method, a process involves the concurrent
activity of several roles at one level. RADRunner [34] is built
as a tool to help use RAD to express business processes. This
activates a new wave of applying roles in the process of analysis
and design of software. The limitation of RAD is its lack of
flexibility. Because a role specifies a part of a process, a role
player must execute the process part as specified.

Roles are also used in order to encapsulate functionalities
that may change dynamically when an object evolves. In the
unified modeling language (UML), roles are taken as names of
association ends, slots in collaborations, and dynamic classes.
To provide appropriate mechanisms in UML for simulating
roles, Steimann revised the UML’s role concept in 2000 [39].
The diversity of concepts for UML to accommodate makes
the UML diagrams difficult to understand including those
expressed with role symbols as proposed. The new role con-
cepts [39] have replaced the notions of association role and
association end role as well as the rarely used association
generalization.

In 1995, Reenskaug et al. applied roles to describe object-
oriented software engineering processes [31]. A role in an ob-
ject specification is called an object type that is a specification
of a set of objects with identical externally visible properties.
A role is a “why” abstraction. All objects that serve the same
purpose in a structure of collaborating objects in a certain
context are said to play the same role. They emphasize the role
model but not the role itself and introduce roles intuitively. The
separation of concern is the major consideration of their role
model. They show a good application of role models in de-
scribing engineering processes. The references cited are mainly
from object-oriented design, management, and psychology
literature.

In 1996, VanHilst and Notkin introduced roles with both
object collaboration and evolution in designing reusable com-
ponents. In the collaboration view, a role is the part of an object
that fulfills its responsibilities in collaboration [42]. Compared
to classes, roles encapsulate fewer decisions and are thus more
stable with respect to evolution. They provide a method to
implement roles with C++ class templates and add roles into

a class to refine or extend its interface. The composition and
inheritance are used to express the collaboration between roles
in their implementation. Their work again demonstrates that a
class-based programming language can be expanded to support
roles with evolution requirement.

In 1998, Riehle et al. introduced a role type to describe the
view that one object holds on another object. A role type is
described by using a type specification mechanism [32], [33].
A role object is one that represents one specific role of a core
object to its clients. The role object wraps the central core
object, which maintains its role objects for different clients.
Collaboration is taken as a set of roles and their relationships.
Hence, the design of a framework can be composed of role
models, each of which may be a pattern instance. A role model
actually describes a particular aspect of an object. Their roles
facilitate the separation of concerns. It is clear that their work
improves Reenskaug’s [32] by providing the modeling roles
that support framework design and integration.

In 1999, Kendall discussed a methodology to design role
models with aspect-oriented programming [31]. She adopted
and implemented the role concepts as modeling tools [32],
[33]. According to her, roles are abstraction and decomposition
mechanisms. A role can be specified in the language AspectJ. It
is concluded that aspect-oriented programming is a promising
approach to supporting role models.

In 2000, Bäumer et al. modeled context-specific views of
an object with a role-object pattern as separate role objects.
Role objects are dynamically attached to, and removed from
the core object [4]. They separate two subclasses: core classes
and role classes for an object class. They use subclasses of the
role classes to express the roles played by the instances of the
object class. Their method provides good guidance to design an
object system with role concepts. It helps the role concepts be
reused at the pattern level.

In the same year, Zhao and Kendall proposed the applications
of role modeling in component design [43]. A role model is
stated as an abstraction that describes the patterns of interac-
tions among a set of entities. The entities play certain roles in a
given context. The context is captured by the role model. A role
model depicts frequently occurring but transient relationships
among entities or objects that are working together to perform
a certain task or accomplish a certain goal.

Although the aforementioned works have little in common,
they indeed have some objectives, that is, to separate con-
cerns, integrate rights and responsibilities, confine boundaries
or specify processes. Roles are abstraction and decomposi-
tion mechanisms with notational systems in system analysis
and design [19], [23], [24], [26], [29], [32], [34]. They are
used as a tool to analyze the system requirements and ensure
that future products reflect what a client hopes to receive.
UML, as a formal diagrammatic tool [39], and RAD, as a
formal process description tool [26], [29], [34], use roles to
model groups of operations and processes. Roles are played
by objects in software. In component design, roles are used
to express frameworks for reuse [21], [43]. We have prac-
ticed applying roles in the constructions of role-based pro-
grams to express objects’ evolution [25] and have demonstrated
that software construction can be done by specifying roles,

www.manaraa.com

1114 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 6, NOVEMBER 2006

TABLE I
ROLE MECHANISMS IN SOFTWARE DEVELOPMENT

specifying objects, assigning roles to objects and having them
play roles.

All the above discussions are relevant to the modeling and
construction (including analysis, design, and coding) phases of
software development [30].

C. Remarks

The aforementioned research demonstrates that it is possible
to introduce roles into every activity of software engineering.
Table I lists the relevant literature. All these topics remain to
be explored and more practice is required. It is our hope that
we create a consistent role model that can be applied over the
whole software life cycle to positively and profoundly impact
the software development practice.

In conventional software engineering, roles are applied in
different ways for different purposes, e.g., roles as modeling
mechanisms, interaction media, analysis and design tools, com-
ponents for process models, and human resource management
tools. The major problems of these applications are that they
have not really understood the nature of roles and developed a
practical mechanism for reusing, managing, and applying roles.
In these applications, roles were still a very ambiguous and
abstract concept. Also, in conventional software engineering,

roles are considered as a mechanism to solve one aspect or
one activity confined in software engineering, such as, man-
agement, analysis, modeling, and design. The roles and role
mechanisms in conventional software engineering are scattered,
loosely related, and inconsistent.

By whether roles have concrete specifications, we have the
following.

1) Interface Roles: Roles are abstract entities to express the
interfaces between objects, agents or people in collabora-
tion. In this sense, roles only specify what their services
are and what their requests are. How the services and
requests are processed depends on the role players. We
can call these interface roles.

2) Process Roles: Roles describe the concrete behavior of
objects, agents, or humans. They specify not only services
and requests but also how services and requests are
processed. We can call these process roles.

IV. RBSD

In software development, there are communication, plan-
ning, modeling, construction, and deployment phases [30].
Software development is a process of mapping from a problem
domain to its solution domain. Roles can be useful in all

www.manaraa.com

ZHU et al.: SUPPORTING SOFTWARE DEVELOPMENT WITH ROLES 1115

the different phases from a generalized form in concepts to a
concrete form in programming entities. It is beneficial for us to
have a consistent view of roles.

The common meaning of the term “role” is derived from
the theater and refers to the part played by an actor. A role
represents a specific status that possesses certain rights and
accompanying responsibilities. It can be defined as a set of
regulations defining what the behavior of a position member
should be. A role defines a set of responsibilities and ca-
pabilities needed to perform the activities relevant to these
responsibilities [1]. A role is defined as the prescribed pattern
of behavior expected of a person in a given situation by virtue
of the person’s position in that situation. It is simply defined
as a position in a social structure [2]. A position means a more
or less institutionalized or commonly expected and understood
designation in a given social structure such as an accountant,
mother, or church member [2]. A role is a set of expectations
about the behavior of a particular position within a work
system. Generally speaking, a role is a position occupied by a
person in a social relationship. Within this position, the person
possesses special rights and takes special responsibilities.

To discuss the properties of roles, we need at first to clarify
some concepts of object orientation. An object is anything that
forms an accessible entity in a software system. An object
provides services by responding to the messages sent to it.
An object can ask for services by sending messages to other
objects. A component is an object or a group of objects control-
lable by a single person in software development.

Combining the above discussion with the review in
Section III, we believe that a role presents two aspects: one
is the services and the other is the right to ask for services
[45]–[47]. From these two aspects, we could apply roles into
every phase of software development.

1) A role is independent of players.
2) A role can be created, changed, and deleted.
3) A role includes both responsibilities when players are

taken as a server and rights when they are taken as a
client. To specify a role means to specify both respon-
sibilities and rights.

4) As for the service interface, a role is actually a list of
messages to be sent to an entity. As for the request
interface, a role expresses or restricts the accessibility of
an entity to the system.

5) Roles can be taken as a media for interactions. In com-
munication, planning, and deployment phases, roles are
described with written documents and are taken as work-
ing guidelines.

6) Roles are taken as interface specification tools. In mod-
eling and analysis phases, roles are used to describe
objects’ jobs.

7) Roles are taken as process specification tools. In the
design and coding phases, roles are described by concrete
coding segments to confine the processes of objects.

In RBSD, a role is a tool for task management and a modeling
mechanism for software component design. Roles are the basic
and kernel concepts. Roles help one follow the principles and
approaches for software development. They are clearly and

Fig. 1. Communications in a role-based team.

exactly specified. In RBSD, roles and their supplementary
mechanisms should be able to give a solution in a systematic
way for problem solving with software. In RBSD, via roles,
we will prevent developers from being overwhelmed by too
much irrelevant information and tasks. To reach such a goal, the
problems to be solved include what roles are, how to express,
present, store, and change a role. Roles and role mechanisms in
RBSD need to be integrated, consistent, and complete.

The benefit of roles in RBSD is that developers could com-
plete their jobs within their allowed rights, i.e., visible contexts
or objects. In traditional object-oriented software engineering,
developers are granted rights to access all accessible objects
(classes) in the system to be developed. This granted ability is
the main source of poor readability and maintainability, i.e., to
understand a class, one needs to understand all the classes (at
least the interfaces of these classes) used in the class.

Roles can help in RBSD:

1) identify the human user “self ”;
2) avoid interruptions;
3) enforce independence by hiding people under roles;
4) encourage people or agents to contribute more;
5) remove ambiguities to overcome expectation conflicts;
6) work with specialized interfaces;
7) concentrate on a job and decrease possibilities of conflicts

for shared resources;
8) transfer roles based on the requirements of a group;
9) separate concerns for complex components;

10) specify concrete processes relevant to specific
requirements.

A. Activities of RBSD

Using a role-based approach, software development is com-
posed of four activities: team management (Fig. 1), architecture
design (Fig. 2), component design and implementation (Fig. 3),
and system integration (Fig. 4). We use activities instead of
phrases, because they may be, sequential, interleaved, or par-
allel in terms of time. In team management, roles are designed
for and distributed to team members, i.e., people. In architecture
design, roles are designed for objects. Role specification and
role relationships are the major tasks for designers to describe;

www.manaraa.com

1116 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 6, NOVEMBER 2006

Fig. 2. Roles: Architecture design.

Fig. 3. Objects: Component design and implementation.

Fig. 4. Assign roles to objects: System integration.

in component design and implementation, object design and
implementation are the major tasks for programmers; in system
integration, objects, and roles are combined together to make
a whole system executable. In all the activities of RBSD, we
emphasize the following principles.

1) Clear role specification: It is easy for human users and
modelers to understand their responsibilities and rights.

2) Flexible role transition: It is flexible and easy for a human
user and components to transfer from one role to another.

3) Flexible role facilitation: It is easy for people, modelers,
and programmers to specify roles. Because a system is
developing, the existing roles might be required to adjust
to correspond to the development of the system.

4) Flexible role negotiation: There are two aspects for role
negotiation. One is that it is easy to negotiate the speci-
fication between a human user and a role facilitator. For
example, a programmer may negotiate with the project
manager for some special objects to develop. The other
is that it is easy for people to negotiate roles for objects.
For example, analysts, designers, and programmers may
negotiate with each other about the roles of an object and
some special aspects of a role.

In Figs. 1–4, a rectangle is used to express a role; a circle
an object or a person; a solid arrow requests/services; a dashed
line a role attachment which means the object (person) is able

to play the role; and a solid line a current role which means that
the object (person) is playing the role.
1) Team Management: We can use roles to make organiza-

tion more efficient. A role-based team that derives from the
chief programmer team [36] is shown in Fig. 1. In this team, a
person only contacts or communicates with the roles specified
in the team. Adding a new person into the team does not
increase the communication cost among persons. It only adds
one line of communication between the newly added person
and the roles she/he is playing.
2) Architecture Design: Designers are mainly concerned

with specifying roles and the relationships among roles. In
design, roles are created and put into the pool (Fig. 2).

In architectural design, role specification and role rela-
tionships are the major tasks for designers to describe; in
component design and implementation, object design and im-
plementation are the major tasks for programmers; in system
integration, objects and roles are combined together to make a
whole system executable.
3) Component Design and Implementation: In RBSD, pro-

grammers are mainly concerned with implementing classes
and objects that can play roles (Fig. 3). The tasks of object
implementation are to accomplish the services to respond to the
requests with special objects (classes with data structures and
algorithms). In this implementation, programmers may work
in parallel. Experienced and highly skilled programmers may
produce more objects than novice programmers. Suppose that
there are M objects, N programmers making objects and each
programmer completes one object at T time units. The time to
complete M objects is MT/N . Therefore, adding more (∆)
programmers will certainly shorten the time to complete the
objects MT (N + ∆). This potentially breaks Brooks’ law [8]
which states that adding manpower to a late software project
makes it later.

There are two possibilities for an object that cannot work:
One is that the designers do not give it enough provided requests
(or rights); or the coders do not completely apply the provided
requests (rights). The designers should concentrate on specify-
ing roles and the relevant requests and services, they need only
care about the high-level provision and request relationships,
that is, what roles should be in a system, what roles require,
and what roles provide. The implementers mainly work on how
to implement the services using the provided requests.
4) System Integration: With roles and objects, a software

product can be obtained by integration, i.e., assigning roles to
objects and having objects play roles. This step builds the de-
liverable software product (Fig. 4). At this step, objects are as-
signed to match a role or roles to play. If each role has a relevant
object to play it and each object can provide the function, space,
and speed requirements of that role, the system is complete.

Evidently, the above three steps can be done by specialists
such as designers, programmers, and system integrators with
different experiences and trainings. The integration step shows
scaling capabilities based on how many objects play a single
role. The efficiencies of different objects provided by different
programmers may be different. Based on these differences, the
managers of the development team have concrete evaluation
criteria for programmers.

www.manaraa.com

ZHU et al.: SUPPORTING SOFTWARE DEVELOPMENT WITH ROLES 1117

From Figs. 2–4, a system is designed when roles are designed
and specified. System construction is to design objects that are
qualified to play the roles and arrange objects to play roles.

With Figs. 2 and 3, software design is to design roles, and the
relationships among the roles, and software implementation is
to program objects and have the objects play roles.

B. Role-Based Processes

By a role-based software process, we mean that in software
development there should be clear role specifications, flexible
role transitions, flexible role facilitations, and flexible role
negotiations as stated in Section IV-A.

From these properties, we find that roles are the key media
for people to interact, collaborate, and model. The people are
allowed to concentrate on their own roles. Role specification
and negotiation are the major tasks in software engineering
management. The specification of the interactions among roles
actually defines the processes of management. In the sense of
management, roles are played by people.

On the other hand, objects play roles from the viewpoint of
programming, i.e., analysis, design, and construction. We can
view role-based programming as an advance in programming
methodologies. In each new methodology, the tasks of its
predecessors are valid but become less important. We note the
following three programming methodologies.

1) In procedural programming, composing procedures and
specifying procedure calls are the most important tasks
of programming.

2) In object-oriented programming, composing classes, in-
stantiating objects, and specifying message passing are
the most important tasks of programming.

3) In role-based programming, composing roles and speci-
fying how objects play roles are the most important tasks
of programming.

An RBSD process including management, analysis, de-
sign, and construction is as follows. Note that it is iterative
for architecture design, object implementation, and system
integration.

Step 1) Negotiate and specify roles: Team members discuss
or negotiate to specify the roles relevant to people
or components. If no compromise or agreement is
obtained, abort the process.

Step 2) Assign roles: Every person or component is assigned
one or more roles. If no agreement is obtained, abort
the process.

Step 3) Play roles: People work according to their roles until
the work is successfully completed or some conflicts
or discontents occur.
Step 3.1) Provide services and do the work con-

fined by the role: People understand
what they need do at this time. Modelers,
designers, and programmers understand
how to describe the processes to serve.
Incoming messages are confined by the
role responsibilities (the service inter-
face). If conflicts or discontents occur,
the collaboration goes to Step 1).

Step 3.2) Request for help: To provide services,
people need access to and interact with
the environment by sending messages,
or asking for resources and others’ ser-
vices. Modelers and designers need to
describe components by playing roles
and requesting other components. The
messages are confined by the role rights
(the request interface). If conflicts or dis-
contents occur, the collaboration goes to
Step 1).

Based on the above description, we can judge if a software
system is role based or not. In fact, many traditional systems
that apply role concepts cannot be called role-based systems
because they support only some role views but do not use roles
as the underlying mechanisms.

In a conventional software process model, ones have phases
such as communication, planning, modeling, construction, and
deployment. The role-based procedure [Steps 1)–3)] can be
applied into every phase of the SDLC. The differences among
the different phases are the role players. That is to say, in the
modeling phase, the role players are software components such
as classes; in the construction phase, they are objects; and in
other phases, they are the team members.

C. Primitive Roles

Based on our E-CARGO model [46], we can obtain
a new abstract software development team T ::= 〈C,O,A,
M,R, E ,G, s0,H〉, where C is a set of classes; O is a set of
objects; A is a set of agents; M is a set of messages; R is a set
of roles; E is a set of environments; G is a set of groups; s0 is
the initial state of the team; and H is a set of people.

A class c is a template for a group of similar objects. It
describes the operations on the group of objects and specifies
the data structure of these objects. c ::= 〈n,D,F ,X〉, where n
is the identification of the class; D is a data structure description
for storing the state of an object including pairs of classes
and their external identifications; F is a set of the function
definitions or implementations; and X is a unified interface of
all the objects of this class.

An object o is everything in a system that occupies a memory
cell or cells. It can be accessed and its data or status can be
changed by operations on it. o ::= 〈n, c, s〉, where n is the
identification of the object; c is the object’s class identified by
the class identification or name; and s is a data strucutre whose
values are called attributes, properties, or states.

An agent a is a special object that represents a user involved
in collaboration. It is defined as a ::= 〈n, ca, s,Nr,Ng〉, where
ca is a special class that describes the common properties of
users, n is the identification or name of the agent, s is the set
of properties of the agent, Nr means a set of identifications of
roles the agent is playing, and Ng means a set of identifications
of groups the agent belongs to.

A message m is defined as m ::= 〈n, v, l,P, t〉 where n is
the identification of the message, v is null or the receiver of the
message expressed by an identification of a role, l is the pattern
of a message, specifying the types, sequence, and number of

www.manaraa.com

1118 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 6, NOVEMBER 2006

parameters, P is a set of objects taken as parameters with the
message pattern l, where P ⊂ O, and t is a tag that expresses
any, some, or all message.

A role r shows both the rights and responsibilities of human
users. Incoming messages are used to express responsibili-
ties and outgoing messages to express rights. It is defined as
r ::= 〈n, I,Na,No〉 where, n is the identification of the role,
I ::= 〈Min,Mout〉 denotes a set of messages, wherein, Min

expresses the incoming messages to the relevant agents, Mout

expresses a set of outgoing messages or message templates to
roles, i.e., Min,Mout ⊂ M,Na is a set of identifications of
agents that are playing this role; and No is a set of identifi-
cations of objects including classes, environments, roles, and
groups that can be accessed by the agents playing this role.

An environment e expresses a structure to build a group. It
is specified by roles, the objects accessed by the roles and the
cardinalities of agents playing roles. e ::= 〈n,B〉, where n is
the identification of the environment; and B is a set of tuples of
role, number range and an object set, B = {〈nr, q,No〉}. The
number range q tells how many users may play this role in this
environment and q is expressed by [lower, upper].

A group g is a set of agents that work in an environment, i.e.,
a set of agents assigned with roles in the relevant environment.
g = 〈n, e,J 〉, where n is the identification of the group; e
is an environment for the group to work; and J is a set
of tuples of identifications of an agent and role, i.e., J =
{〈na, nr, no〉| ∃q, no(no ∈ No)∧(〈nr, q,No〉 ∈ e · B)}.

The initial state s0 is expressed by initial values of all
the components C, O, A, M, R, E , and H such as built-in
classes, initial objects, initial agents, primitive roles, primitive
messages, primitive environments, and initial personnel.

With the participation of people H, T evolves, develops,
and functions. Such participation includes joining a team
T , accessing objects of the team, sending messages through
roles, and forming a group in an environment. The results of
the team work are a new state of T that is expressed by the
values of C, O, A, M, E , G, and H, where 〈C, O,M,R〉 forms
the software product.

In a role-based team, people cooperating in software de-
velopment comply with the rules in organizations relevant to
roles. In a software development platform or a computer-aided
software engineering tool, agents are special objects that repre-
sent people in a development team. Agents in software systems
are more about autonomous objects. Objects and agents are
assumed as the basic building blocks of software systems.

To support role-based processes, we need to provide prim-
itive roles for a software development team. Based on the
object principles, agent principles, role principles, and group
principles [45] in role-based collaboration, the primitive roles
should be as follows.

1) Class manager: This role allows a human user to create,
delete, modify classes, or dispatch messages to a class.
Newly changed classes are reloaded into the system
dynamically.

2) Object manager: This role allows a human user to create,
delete, and modify objects.

3) Agent manager: This role allows a human user to create,
delete, and modify agents.

4) Environment manager: This role allows a human user to
create, delete, and modify environments including adding
or deleting objects and role ranges in an environment.

5) Group manager: This role allows a human user to create,
delete, modify groups, assign roles to, or remove roles
from agents in the group, or dispatch messages to a group.

6) Role facilitator: This role allows a human user to specify
roles. To specify a role, the human user simply needs to
drag and push the required messages or message patterns
from a list of classes, agents, roles, groups, objects, and
environments.

7) Role dispatcher: This role manages the messages sent to
the roles it manages. The situation is as follows. Human
users would like to ask for services. They search in the
outgoing messages and find one. They then want to send
the message. When they are asked to specify a receiver
among agents, objects, and roles, they select a role. That
means any human user who plays this role is fine to
provide that service to them. Now, a human user who
plays the role dispatcher will help to find a human user
or agent to dispatch the message.

8) Role negotiator: This role allows a human user to approve
another human user who hopes to play a role. The human
user who plays the role negotiator manages the role to
be played by another user. If people want to play a role,
they must provide their agent class that implements all the
required incoming message patterns.

D. Software Development Scenario

With the above primitive roles, we can define roles and apply
our role-based process to software development. For simplicity
of description, we can define roles such as project manager, an-
alyst, designer, programmer, and tester. A special characteristic
of our tool is that the users can add, modify, and delete roles
dynamically. That is to say, the tool can accommodate any new
roles required by the work. It is not restricted by the primitive
roles in the tool. A scenario using this prototype to develop a
software product is as follows.

1) With the group and role specification mechanism pro-
vided by the platform, we specify a development team
with the roles of a project manager, an analyst, several
designers, many programmers, and several testers and
users in the platform.

2) A project manager can log into the platform with a role to
get the interface specified by the project manager role.
This role only concentrates on some special tasks of
budget and time management, and some key technical
issues of the project.

3) An analyst logs in with the interface of the role analyst
and can accomplish the tasks relevant to him/her. His/her
tasks include selecting models and tools, decomposing
problems, distributing tasks to roles, and completing the
requirement document and the analysis report.

4) A designer only views a subsystem of the project
such as class hierarchy, class specification, and function
specifications without caring about the code of every class
and function.

www.manaraa.com

ZHU et al.: SUPPORTING SOFTWARE DEVELOPMENT WITH ROLES 1119

Fig. 5. Architecture of an RBSD platform.

5) Programmers view only their classes or functions and put
their major efforts into coding the concrete classes and
functions.

6) Testers can view and test the project in part or whole.
They can submit testing results.

7) A user can try some objects and submit comments.
8) After programmers finish their jobs, they submit their

code.
9) The designers collect all the completed parts into subsys-

tems and submit them.
10) The analyst may collect all the subsystems and integrate

them into one system, check testing results, collect com-
ments from users, decide if there is a requirement to
modify, and make the product deliverable.

11) The project manager manages budget and time, super-
vises, and coordinates with analysts and designers to
guarantee the project is delivered on time and within the
budget.

V. PROTOTYPE TOOL FOR RBSD

Eclipse is a software development platform that supports
programmers to make Java programs interactively with abun-
dant programming tools. It is currently well received by Java
programmers. As a general-purpose tool, Eclipse [28] can
be used to develop tools and applications as diverse as web
sites, embedded Java programs, C++ programs, and Enterprise
JavaBeans. Although it provides a very good infrastructure
that allows new plug-in software components to be added
to the platform, it does not provide innovative and powerful
mechanisms to support software project management and col-
laborations among software developers. Its major contributions
are still in the provision of flexible low-level tools for pro-

grammers. To become a more competitive integrated devel-
opment environment (IDE), it is very important for Eclipse
to provide high-level tools for all the personnel relevant to
the SDLC, such as users, testers, programmers, designers,
analysts, and managers. Our aim is to extend Eclipse into a
RBSD tool and extend it to support all phases of software
development.

To construct a software team as discussed above, we com-
pose an appropriate architecture based on the client/server
model (Fig. 5). The clients support all the user interactions
within the system:

1) class and object management interfaces;
2) role specification interfaces;
3) role playing interfaces;
4) role negotiation interfaces;
5) role transition interfaces.

The above interfaces are just frameworks to provide the
interactions between users and the system. The details in the
interfaces are determined by the roles played by users.

The server manages all the information of the system includ-
ing classes, objects, agents, roles, environments, and groups.

• The database stores and manages all the permanent infor-
mation of the system.

• The information exchange broker accepts and replies to all
the requests from the clients.

• The tools help the role facilitators specify roles such as
retrieving classes, objects, agents, roles, environments,
and groups for special messages or message patterns.

The system is composed of a server and a set of clients
(Fig. 5). The server is responsible for hosting collaborative
projects, coordinating collaborative interactions, coordinating

www.manaraa.com

1120 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 6, NOVEMBER 2006

the communication between clients, and deploying new types
of collaboration. The server is composed of a role-based core
(RB Core) and other collaborations that can be added as needed.
In our prototype, the server is called role-based eclipse (RBE).

At the server side, RBE manages roles, user agents, and the
installed collaborations. This kernel allows other components
to interact with each other and access the mechanisms for
dispatching, coordinating, and managing the rights of roles
and users. With the help of the client/server structure and
the deployment mechanism based on roles, the clients can
transparently be updated with new collaborative components.

To show the usefulness of the plug-in facilities of the system
and support a distributed collaborative software development
environment, the RBE server also implements a role-based
source control subsystem based on concurrent version system
(CVS) called role-based CVS (RCVS).

To support the extensibility of our prototype system and to
have it act as both an IDE and a rich client platform, we use
Eclipse to support the implementation of our clients. The RBE
clients communicate with the RBE server over remote method
invocation to support real-time interactions.

A. RBE Server

The RBE server implements the E-CARGO framework dis-
cussed in Section IV-B. The RB Core subsystem manages roles
(R), agents (A), and collaborations (E and G). It allows clients
to login, download the appropriate objects (O) based on the
classes (C) in the server, and continue collaborations based on
the downloaded objects. It has two main interfaces for a user to
access: the user interface and the administrator interface. Each
user can access the user interface by default so that they can
interact with the system. The administrator interface is accessed
through the default role of Administrator. Administrators have
the ability to manage the system. They can manage roles by
adding/removing roles or setting the access rights of roles. They
can manage users by allowing or denying them access to the
system. They can also assign roles to users and process role
applications by users.

Agents are stored and managed at the server and are used to
represent client users. Each user has a unique identity. Users
can play roles, apply for new roles, and log into and out
of the system. The agents are responsible for communication
with users, keeping track of the roles that users are currently
playing or can apply for, and supplying users with the proper
objects based on their current roles. Roles also have rights in
the form of access to interfaces. For example, the default role
Administrator has access to the “Role Administration” interface
of the system.

B. Collaborations

In our system, a collaboration is a component that is inte-
grated into the system to extend it. A collaboration is actually
a workable group (g ∈ G) created based on an environment
(e ∈ E). Collaborations can be added to the system at startup
or during runtime. Each collaboration in the system can in-
teract with the kernel and/or other collaboration(s) already

Fig. 6. Client user interface showing a user applying to act in a role. (Color
version available online at http://ieeexplore.ieee.org.)

installed. Collaborations can either exploit the message-passing
mechanisms of the roles or define new ways for the roles to
collaborate based on their need. Collaborations define one or
more perspective(s). Using the administration user interface, a
role can be assigned access to one or more of the perspectives
defined in a collaboration. Each perspective is associated with a
session class. Objects of the session class exist on the server and
are exposed to the client over a remote interface. The session
objects can be queried for a client object that is passed to the
client. Client objects interact with the session object and can
do jobs that must be done on the client, e.g., displaying an
appropriate user interface or downloading the files from the
RCVS collaboration.

C. RBE Client

The client side of the system is implemented as a plug-in
for Eclipse. The plug-in has mechanisms for connecting to the
server, creating a new project on the server, or logging into a
project that has already been created. Once the user is connected
to the server the user interface is downloaded automatically
and displayed in the RBC View window (Fig. 6). From this
“root” interface the user can transition roles, apply for roles,
and display other interfaces their current role has the access to.
Fig. 6 shows the client user interface when applying for a role.

With the interfaces shown in Fig. 6, administrators can
specify roles by setting the accessibilities to folders and files
and other objects in a project. Similarly, programmers can add
Java classes into the src directory, compile, debug, and test their
own assigned software components such as classes. Designers,
analysts, or project managers can obtain all the source code
completed by the programmers and test a part or whole system.
Users can also transfer to different roles easily to complete
different tasks.

D. Role Playing Package

Role playing is the key mechanism in the implementation
phase of an RBSD life cycle.

www.manaraa.com

ZHU et al.: SUPPORTING SOFTWARE DEVELOPMENT WITH ROLES 1121

Roles can be taken as mechanisms to divide problems and
facilitate changes. Traditional object-oriented programming
methodologies take objects as unchanged entities after instanti-
ations but in reality, objects evolve over time. We have practiced
object and agent evolution with roles [25].

To support designing and coding software, we implemented
a role playing package in Java. With this package, programmers
can use Java to specify roles, define role players and have role
players play roles in Java. The document of the package can be
found at our website [47].

To define a role with our package, one only needs to define
a class that extends class Role. To simulate an object playing
roles, one only needs to define a class that extends class Role-
Player. With class Role, we can easily express the relationships
among roles, i.e., the role relationships. When an object plays
a role, it actually attaches an instance of a role class that is a
subclass of Role. With classes RolePlayer and Role, we can
easily express the relationships between an object and a set of
roles. In the main class, we can easily simulate object evolution,
role transition and role playing.

With the package we provide, the role-based process steps
discussed in Section IV can also be used in designing and
coding software systems. In this way, role specification and
role assignment become the most important jobs in software
design and coding. Role playing occurs when the software
is running. This package also shows that the proposed role
mechanism can be used to support object evolution and object
collaboration.

VI. CONCLUSION

The contributions of this paper are as follows.

1) This paper further establishes the importance of roles in
all aspects of software engineering.

2) It proposes a process of role-based software engineering.
3) It develops a prototype tool to dynamically add, specify,

and modify roles. Based on our research, we believe that
these tasks are evidently required in all the phases of
software development.

RBSD is an exciting research area. Based on the RBSD
platform, we may form a virtual software company by recruit-
ing different staff for the development team. Programmers and
designers from all over the world would have an opportunity
to contribute to a software product. Roles have been applied in
many areas for long. More attention must be paid to them in
wider areas. For example, user interfaces present information
in ways compatible with roles [16], [38]. Agents represent the
roles of their human owners. In computer-supported cooper-
ative work, people with roles can talk to others at a definite
time. If a stranger calls them when they are busy with a
special task, the current role would block such intervention.
In management or workflow systems, one will do as the roles
specify.

Software development is a systematic and complex task.
We have only completed the first step toward a full RBSD
methodology. There are still many challenges. We can foresee

more interesting and successful activities in the research and
practices of roles. In applying the role concept, a key problem
is how to specify a role and how to apply a role in an organi-
zation or information system. The traditional role mechanisms
and role concepts are not qualified to accomplish these tasks.
Our proposed role mechanisms have solved some aspects of
RBSD [44]–[46]:

1) integrate both the right and the responsibility aspects into
roles;

2) unify the role concepts through the whole SDLC;
3) build roles as reusable components in different

environments.

There are many essential topics that remain unsolved and
require more comprehensive research:

1) improve the role mechanisms to allow easier speci-
fications of messages, to match roles, and to deploy
roles;

2) improve our prototype to support more activities in
software engineering;

3) expand the collaboration activities with roles and to
construct a real role-based collaborative system;

4) expand the prototype to support people to work by defin-
ing skills of roles, posting roles, accepting applications,
evaluating them, and assigning roles to them;

5) evaluate the platform and assess its value.

ACKNOWLEDGMENT

The authors would like to thank L. Liu (Hunan University,
China), for designing and writing programs to demonstrate
the authors’ ideas of role-based collaboration. His questions
activated the authors’ deeper thinking.

REFERENCES

[1] S. T. Acuna and N. Juristo, “Assigning people to roles in software
projects,” Softw. Pract. Exp., vol. 34, no. 7, pp. 675–696, Jun. 2004.

[2] B. E. Ashforth, Role Transitions in Organizational Life: An Identity-Based
Perspective. Mahwah, NJ: Lawrence Erlbaum, 2001.

[3] S. Bandinelli, E. Di Nitto, and A. Fuggetta, “Supporting cooperation in
the SPADE-1 environment,” IEEE Trans. Softw. Eng., vol. 22, no. 12,
pp. 841–865, Dec. 1996.

[4] D. Bäumer, D. Riehle, W. Siberski, and M. Wulf, “Role object,” in
Pattern Languages of Program Design 4, N. Harrison, B. Foote, and
H. Rohnert, Eds. Reading, MA: Addison-Wesley, 2000, pp. 15–32.

[5] E. Bertino, P. A. Bonatti, and E. Ferrari, “TRBAC: A temporal role-
based access control model,” ACM Trans. Inf. Syst. Secur., vol. 4, no. 3,
pp. 191–223, Aug. 2001.

[6] B. J. Biddle and E. J. Thomas, Eds., Role Theory: Concepts and Research,
Hoboken, NJ: Wiley, 1966.

[7] R. P. Bostrom, “Role conflict and ambiguity: Critical variables in the MIS
user-designer relationship,” in Proc. 17th Annu. Comput. Pers. Res. Conf.,
Miami, FL, 1980, pp. 88–115.

[8] F. P. Brooks, Jr., The Mythical Man-Month. Reading, MA: Addison-
Wesley, 1995.

[9] B. G. Cain and J. O. Coplien, “A role-based empirical process modeling
environment,” in Proc. 2nd Int. Conf. Softw. Process, Berlin, Germany,
Feb. 1993, pp. 125–133.

[10] R. N. Charette, “Why software fails,” IEEE Spectr., vol. 42, no. 9,
pp. 42–49, Sep. 2005.

[11] M. J. Covington, M. J. Moyer, and M. Ahamad. (2000). “General-
ized role-based access control for securing future applications.” in Proc.
23rd Nat. Inf. Syst. Secur. Conf. [Online]. Available: http://crc.nist.gov/
nissc/2000/proceedings/toc.pdf

www.manaraa.com

1122 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 6, NOVEMBER 2006

[12] B. Demsky and M. Rinard, “Role-based exploration of object-
oriented programs,” in Proc. 24th ICSE, Orlando, FL, May 19–25, 2002,
pp. 313–324.

[13] D. F. Ferraiolo and D. R. Kuhn, “Role-based access control,” in Proc.
NIST-NSA Nat. (USA) Comput. Secur. Conf., 1992, pp. 554–563.

[14] D. F. Ferraiolo, J. A. Cugini, and D. R. Kuhn, “Role-based access control
(RBAC): Features and motivations,” in Proc. 11th Annu. CSAC, 1995,
pp. 241–248.

[15] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli,
“Proposed NIST standard: Role-based access control,” ACM Trans. Inf.
Syst. Secur., vol. 4, no. 2, pp. 224–274, Aug. 2001.

[16] S. Greenberg, “Personalizable groupware: Accommodating individual
roles and group differences,” in Proc. ECSCW, Amsterdam, The Nether-
lands, Sep. 1991, pp. 17–32.

[17] N. Guarino, “Concepts, attributes and arbitrary relations: Some linguistic
and ontological criteria for structuring knowledge bases,” Data Knowl.
Eng., vol. 8, no. 3, pp. 249–261, Jul. 1992.

[18] L. R. Hoffmann, “Applying experimental research on group prob-
lem solving to organizations,” J. Appl. Behav. Sci., vol. 15, no. 3
pp. 375–391, 1979.

[19] A. Holt, H. R. Ramsey, and J. D. Grimes, “Coordination system tech-
nology as the basis for a programming environment,” Electr. Commun.,
vol. 57, no. 4, pp. 307–314, 1983.

[20] J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor, “Generalized temporal
role based access control model,” IEEE Trans. Knowl. Data Eng., vol. 7,
no. 1, pp. 4–23, Jan. 2005.

[21] E. A. Kendall, “Role model designs and implementations with aspect
oriented programming,” in Proc. ACM Conf. OOPSLA, Denver, CO, Nov.
1999, pp. 353–369.

[22] R. C. King and V. Sethi, “The impact of socialization on the roles adjust-
ment of information systems professionals,” J. Manage. Inf. Syst., vol. 15,
no. 4, pp. 195–217, Spring 1998.

[23] B. B. Kristensen, “Object-oriented modeling with roles,” in Proc. 2nd Int.
Conf. OOIS, Dublin, Ireland, 1995, pp. 57–71.

[24] B. B. Kristensen and K. Østerbye, “Roles: Conceptual abstraction
theory and practical language issues,” Theory Pract. Object Syst. Sub-
jectivity Object-Oriented Syst., vol. 2, no. 3, pp. 143–160, 1996.

[25] L. Liu and H. Zhu, “Implementing agent evolution with roles in col-
laborative systems,” in Proc. Int. Conf. Netw., Sens., and Control, Ft.
Lauderdale, FL, Apr. 2006, pp. 819–824.

[26] J. Murdoch and J. A. McDermid, “Modeling engineering design process
with role activity diagrams,” Trans. Soc. Des. Process Sci., vol. 4, no. 2,
pp. 45–65, Jun. 2000.

[27] M. Nyanchama and S. Osborn, “The role graph model and conflict of
interest,” ACM Trans. Inf. Syst. Secur., vol. 2, no. 1, pp. 3–33, 1999.

[28] Object Technology International, Inc. (2003, Feb.). Eclipse Platform
Technical Overview. [Online]. Available: http://www.eclipse.org/articles/
index.html

[29] M. A. Ould, Business Processes: Modeling and Analysis for Re-
Engineering and Improvement. Hoboken, NJ: Wiley, 1995.

[30] R. S. Pressman, Software Engineering: A Practitioner’s Approach, 6th ed.
New York: McGraw-Hill, 2005.

[31] T. Reenskaug, O. A. Lehne, and P. Wold, Working With Objects: The
OOram Software Engineering Method. Englewood Cliffs, NJ: Prentice-
Hall, 1995.

[32] D. Riehle and T. Gross, “Role model based framework design and integra-
tion,” ACM SIGPLAN Notices, vol. 33, no. 10, pp. 117–133, Oct. 1998.

[33] D. Riehle, R. Brudermann, T. Gross, and K. U. Mätzel, “Pattern density
and role modeling of an object transport service,” ACM Comput. Surv.,
vol. 32, no. 1, pp. 1–6, Mar. 2000.

[34] Role Modellers Ltd. (2004). A Better Way to Support Collaboration.
[Online]. Available: http://www.rolemodellers.com

[35] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-based
access control models,” IEEE Comput., vol. 29, no. 2, pp. 38–47,
Feb. 1996.

[36] S. R. Schach, Object-Oriented and Classical Software Engineering,
6th ed. New York: McGraw-Hill, 2005.

[37] S. A. Sheard. (1996). “The value of twelve systems engineering roles.”
in Proc. INCOSE 6th Annu. Int. Symp., Boston, MA. [Online]. Available:
http://www.incose.org/sfbac/welcome/12-roles.pdf

[38] B. Shneiderman and C. Plaisant, “The future of graphic user interfaces:
Personal role managers,” in Proc. People and Comput. IX, Brit. Comput.
Soc. HCI, Glasgow, U.K., Aug. 1994, pp. 3–8.

[39] F. Steimann, “A radical revision of UML’s role concepts,” in Proc. UML,
2000, pp. 194–209.

[40] M. Turoff and S. R. Hiltz, “The electronic journal: A progress report,” J.
Amer. Soc. Inf. Sci., vol. 33, no. 4, pp. 195–202, Jul. 1982.

[41] M. Turoff, “Computer mediated communication requirements for group
support,” J. Organ. Comput., vol. 1, no. 1, pp. 85–113, 1991.

[42] M. VanHilst and D. Notkin, “Using role components to implement
collaboration-based designs,” in Proc. ACM Conf. OOPSLA, San Jose,
CA, 1996, pp. 359–369.

[43] L. Zhao and E. Kendall, “Role modeling for component design,” in Proc.
33rd Hawaii Int. Conf. Syst. Sci., 2000, p. 8048.

[44] H. Zhu, “A role agent model for collaborative systems,” in Proc. Int. Conf.
Inf. and Knowl. Eng., Jun. 2003, pp. 438–444.

[45] ——, “The role mechanism in collaborative systems,” Int. J. Prod. Res.,
vol. 44, no. 1, pp. 181–193, Jan. 2006.

[46] H. Zhu and M. C. Zhou, “Role-based collaborations and their kernel
mechanisms,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 36,
no. 4, pp. 578–589, Jul. 2006.

[47] H. Zhu. (2005). Role Playing Java Documents. [Online]. Available:
http://www.nipissingu.ca/faculty/haibinz/RolePlaying

Haibin Zhu (M’02–SM’04) received the B.S. de-
gree in computer engineering from the Institute of
Engineering and Technology, China, in 1983, and
the M.S. and Ph.D. degrees in computer science
from the National University of Defense Technol-
ogy (NUDT), Hunan, China, in 1988 and 1997,
respectively.

He is an Associate Professor in the Department of
Computer Science and Mathematics, Nipissing Uni-
versity, North Bay, ON, Canada. He was a Visiting
Professor and a Special Lecturer in the College of

Computing Sciences, New Jersey Institute of Technology, in 1999–2002, and
a Lecturer, Associate Professor, and Full Professor at NUDT, in 1988–2000.
He has published more than 50 papers, four books, and one book chapter on
object-oriented programming, distributed/collaborative systems, and computer
architecture. He was a Guest Associate Editor for the special issue of “Com-
puter and Information Technology” for the International Journal of Pervasive
Computing and Communications.

Dr. Zhu is serving and served as a Cochair of the technical committee of
Distributed Intelligent Systems of the IEEE SMC Society, a Guest Editor for the
special issue of “Collaboration Support Systems” for the IEEE TRANSACTIONS

ON SYSTEMS, MAN, AND CYBERNETICS—PART A, a program committee
member for the 2006, 2005, 2004, and 2003 IEEE International Conference
on SMC, 2006 IEEE International Conference on Networking, Sensing and
Control, 2006 IEEE International Conference on Cognitive Informatics, 2006
IEEE International Conference on Services Computing, 2006 IEEE Interna-
tional EDOC Conference, and the 2004 Canadian Conference on Computer
and Software Engineering Education (C3SEE’04). He is the recipient of the
Best Paper Award from the 11th Illinois Society of Professional Engineers
International Conference on Concurrent Engineering (ISPE/CE2004), the 2004
and 2005 IBM Eclipse Innovation Grant Awards, the Educator’s Fellowship of
Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA)’03, a 2nd Class Nation-Level Award of Education Achievement from
the Ministry of Education of China in 1997, a 2nd Class Nation-Level Award
of Excellent Textbook from the Ministry of Education of China (2002), three
1st Class Ministry-level Research Achievement Awards from the Commission
of Science Technology and Industry for National Defense of China in 1997,
1994, and 1991, and a 2nd Class Excellent Textbook Award of the Ministry
of Electronics Industry of China (1996). He is a member of the Association
for Computing Machinery and a Life Member of the Chinese Association for
Science and Technology.

www.manaraa.com

ZHU et al.: SUPPORTING SOFTWARE DEVELOPMENT WITH ROLES 1123

MengChu Zhou (S’88–M’90–SM’93–F’03) re-
ceived the B.S. degree from the Nanjing Univer-
sity of Science and Technology, Nanjing, China, in
1983, the M.S. degree from the Beijing Institute of
Technology, Beijing, China, in 1986, and the Ph.D.
degree in computer and systems engineering from
Rensselaer Polytechnic Institute, Troy, NY, in 1990.

He joined the New Jersey Institute of Technology
(NJIT), Newark, in 1990, and is currently a Profes-
sor of electrical and computer engineering and the
Director of the Discrete-Event Systems Laboratory.

His research interests are in computer-integrated systems, Petri nets, wireless
ad hoc, and sensor networks, system security, semiconductor manufacturing,
and embedded control. He has over 200 publications including six books, over
90 journal papers, and 15 book chapters. He coauthored with F. DiCesare Petri
Net Synthesis for Discrete Event Control of Manufacturing Systems (Kluwer
Academic, 1993), edited Petri Nets in Flexible and Agile Automation, (Kluwer
Academic, 1995), coauthored with K. Venkatesh Modeling, Simulation, and
Control of Flexible Manufacturing Systems: A Petri Net Approach, (World
Scientific, 1998), coedited with M. P. Fanti, Deadlock Resolution in Computer-
Integrated Systems, (Marcel Dekker, 2005), and coauthored with H. Zhu,
Object-Oriented Programming in C++: A Project-based Approach, (Tsinghua
University Press, 2005). He has led or participated in 30 research and education
projects with a total budget over $10 million funded by the National Science
Foundation, Department of Defense, Engineering Foundation, New Jersey
Science and Technology Commission, and industry. He is Editor-in-Chief of
International Journal of Intelligent Control and Systems.

Dr. Zhou was invited to lecture in Australia, Canada, China, France,
Germany, Hong Kong, Italy, Japan, Korea, Mexico, Taiwan, and the U.S.
He served as Associate Editor of the IEEE TRANSACTIONS ON ROBOTICS

AND AUTOMATION from 1997 to 2000, and currently Managing Editor of the
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C
and Associate Editor of the IEEE TRANSACTIONS ON AUTOMATION SCIENCE

AND ENGINEERING. He was General Cochair of the 2003 IEEE Inter-
national Conference on Systems, Man, and Cybernetics, Washington DC,
October 5–8, 2003, and Founding General Cochair of the 2004 IEEE In-
ternational Conference on Networking, Sensors, and Control, Taipei, March
21–23, 2004. He organized and chaired over 70 technical sessions and served
on program committees for many conferences. He was Program Chair of
the 1998 and 2001 IEEE International Conference on Systems, Man, and
Cybernetics (SMC) and the 1997 IEEE International Conference on Emerging
Technologies and Factory Automation, and a Guest Editor for the IEEE
TRANSACTIONS ON INDUSTRIAL ELECTRONICS and IEEE TRANSACTIONS

ON SEMICONDUCTOR MANUFACTURING. He was General Chair of the 2006
IEEE International Conference on Networking, Sensors, and Control, Ft.
Lauderdale, FL, in April 23–25, 2006. He was the recipient of a National
Science Foundation Research Initiation Award, CIM University-LEAD Award
by the Society of Manufacturing Engineers, Perlis Research Award by NJIT,
Humboldt Research Award for U.S. Senior Scientists, Leadership Award and
Academic Achievement Award by the Chinese Association for Science and
Technology-USA, Asian American Achievement Award by the Asian American
Heritage Council of New Jersey, and Distinguished Lecturer of the IEEE
SMC Society. He was the Founding Chair of the Discrete Event Systems
Technical Committee of the IEEE SMC Society, and Cochair (founding) of the
Semiconductor Factory Automation Technical Committee of the IEEE Robotics
and Automation Society. He is a Life Member of the Chinese Association for
Science and Technology-USA and served as its President in 1999.

Pierre Seguin is an undergraduate student at Nipiss-
ing University, North Bay, ON, Canada.

His research interests are in software develop-
ment, JAVA programming, and role-based collabo-
ration.

